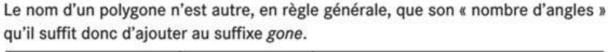


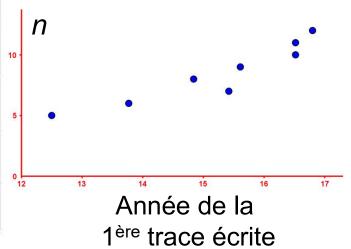
La nomenclature

Ney Marlis



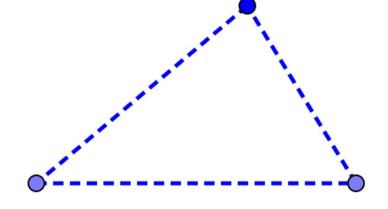
Nombre de côtés	Nom	Première trace écrite
5 πεντα = cinq	Pentagone	XIII ^e siècle
6 εξα = six	Hexagone	1377, « exagone » chez Nicolas Oresme dans Le livre du ciel et du monde
7 επτα = sept	Heptagone	1542 chez Charles de Bouelles dans Géométrie pratique
8 οκτω = huit	Octogone	1484 chez Nicolas Chuquet dans <i>Géométrie</i>
9 εννε = neuf	Ennéagone	1561 chez Collage dans <i>Polygraphie</i>
10 δεκα = dix	Décagone	1652 chez Meynier dans <i>Géométrie</i>
11 ἐδεκα = onze	Hendécagone	1652
12 δωδεκα = douze	Dodécagone	1680
15 πενταδεκα = quinze	Pentadécagone	

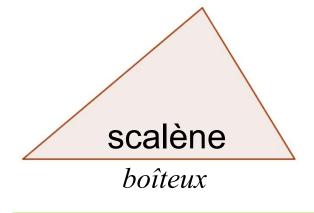
 $angle \rightarrow Triangle$ $c\hat{o}t\acute{e} \rightarrow Quadrilat\`{e}re$

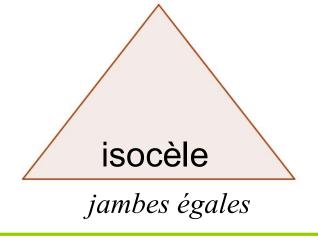


Igente nethinatique

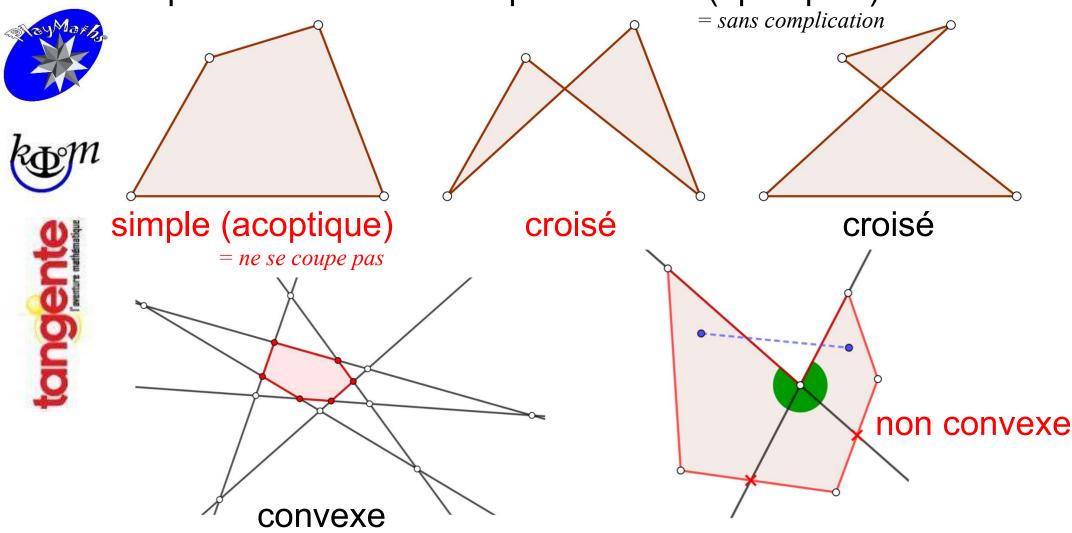
3 points = triangle unique





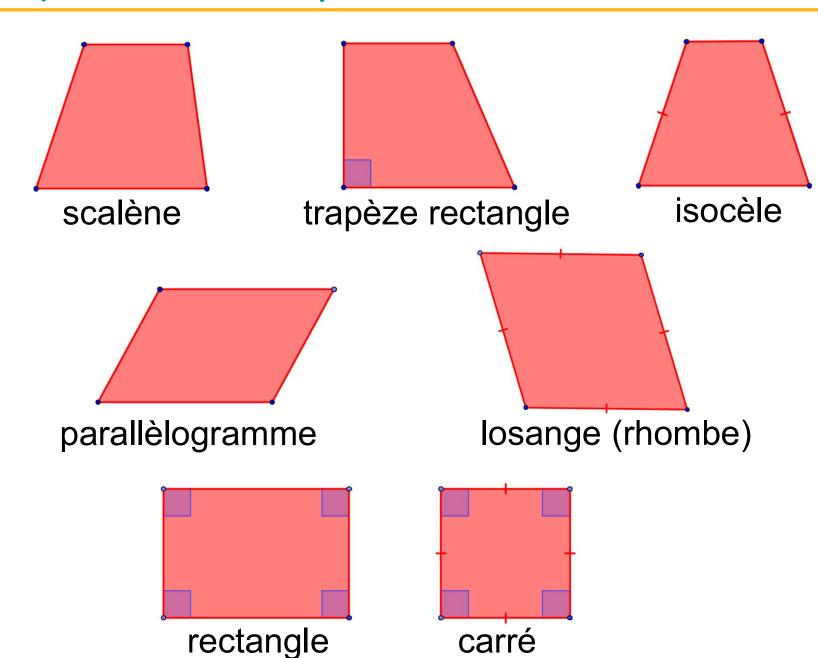


4 points donnés = trois quadrilatères (aploïques)



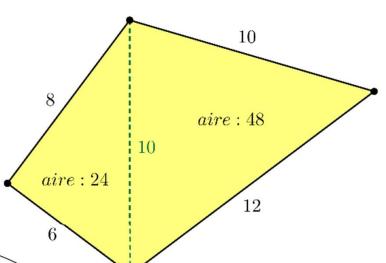
nombre de type de pentagones = 11 nombre de type d'hexagones = 73?

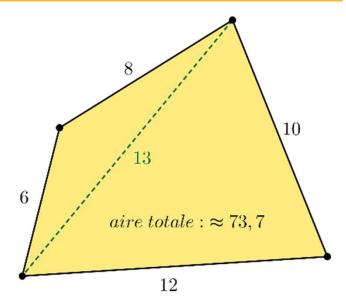
Les quadrilatères simples



Les quadrilatères simples

problème pépère





Formules de surfaces:

Triangle : Formule de Héron d'Alexandrie

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

Quadrilatère inscriptible:

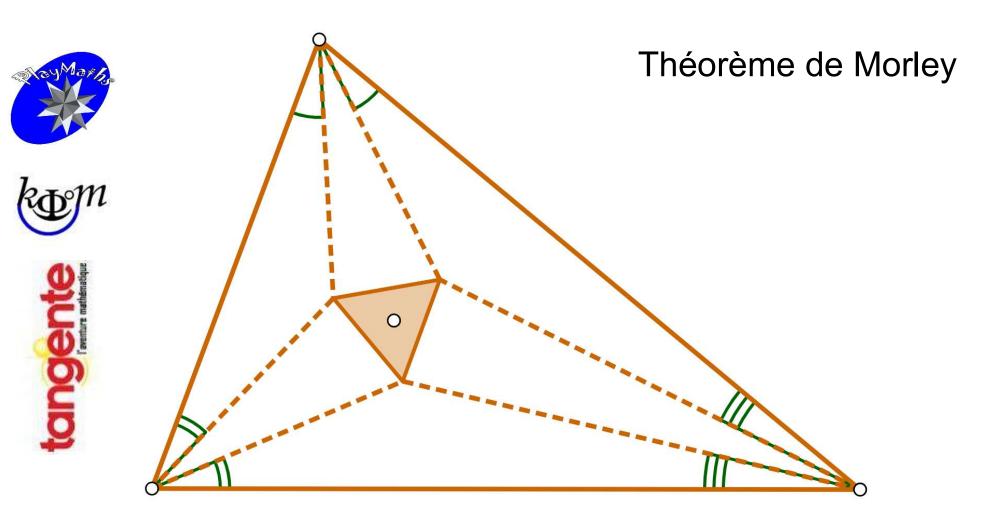
Formule de Brahmagupta (598-670)

$$S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$$

aire maximale pour un quadrilatère inscriptible

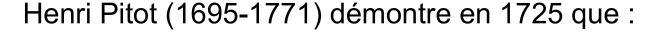
12

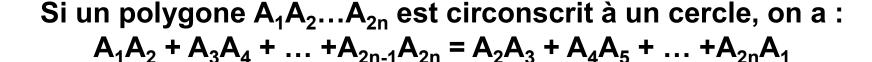
 $aire\ totale: 24\sqrt{10}$

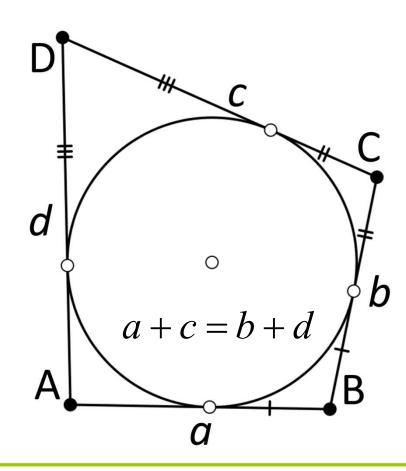


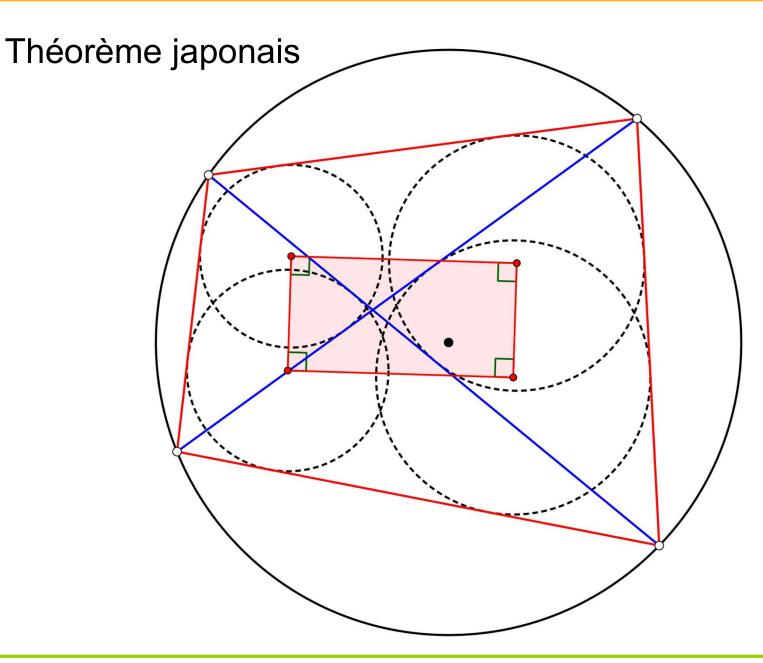
Quand l'ordre naît du désordre

Les polygones circonscrits









9

Quadrilatères inscriptibles

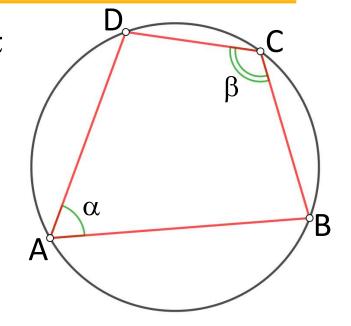
Ptolémée (~100, ~168)

Quadrilatère ABCD inscriptible: $\alpha + \beta = \pi$

$$\alpha = \operatorname{Arg}\left[\frac{d-a}{b-a}\right] \Rightarrow \frac{d-a}{b-a} \cdot \frac{b-c}{d-c} \text{ réel} < 0$$

$$\beta = \operatorname{Arg}\left[\frac{b-c}{d-c}\right]$$

$$\beta = \operatorname{Arg}\left[\frac{b-c}{d-c}\right]$$



$$|(d-a)(c-b) + (b-a)(d-c)| = |(d-a)(c-b)| + |(b-a)(d-c)|$$

Tautologie :
$$(c-a)(d-b) = (b-a)(d-c) + (c-b)(d-a)$$

Théorème de Ptolémée :

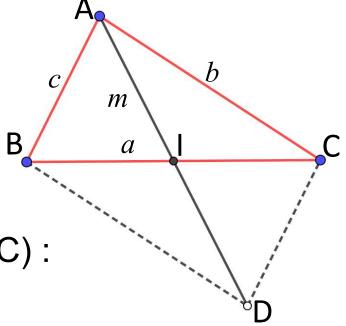
$$AC.BD = AB.CD + BC.AD$$

Produit des diagonales = somme des produits des côtés opposés

$$\left(\overrightarrow{AB} + \overrightarrow{AC}\right)^2 + \left(\overrightarrow{AB} - \overrightarrow{AC}\right)^2 = 2(b^2 + c^2)$$

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD} = 2\overrightarrow{AI}$$

$$\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$$



Théorème de la moyenne (triangle ABC) :

$$b^2 + c^2 = a^2/2 + 2m^2$$

somme des carrés des longueurs des côtés = somme des carrés des diagonales

En 1748, généralisation d'Euler pour les quadrilatères convexes.

Tautologie:
$$(a+b)^2 + (b+c)^2 + (c+a)^2 = a^2 + b^2 + c^2 + (a+b+c)^2$$

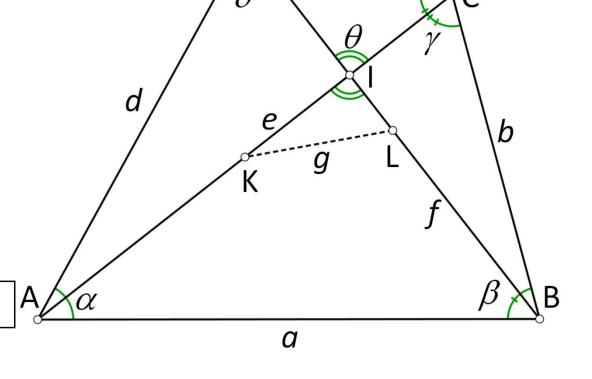
Diagonales:
$$e^2 = \left(\overrightarrow{AB} + \overrightarrow{BC}\right)^2$$
 $f^2 = \left(\overrightarrow{BC} + \overrightarrow{CD}\right)^2$

$$\left. \begin{array}{l} 2\overrightarrow{AK} = \overrightarrow{AB} + \overrightarrow{BC} \\ \overrightarrow{AL} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BD} \end{array} \right\} \quad 2\overrightarrow{KL} = \overrightarrow{AB} + \overrightarrow{CD}$$

$$a = \overrightarrow{AB}$$
 $b = \overrightarrow{BC}$ $c = \overrightarrow{CD}$

$$a + b + c = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AD}$$

$$e^2 + f^2 + 4g^2 = a^2 + b^2 + c^2 + d^2$$



 $g = 0 \Rightarrow$ égalité du parallélogramme

$$\Sigma_{ABD} = AI \cdot f \cdot \sin(\theta) / 2$$

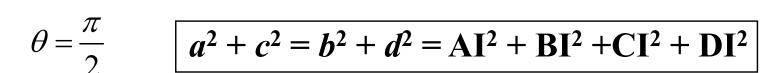
$$\Sigma_{\rm BCD} = {\rm IC} \cdot f \cdot \sin(\theta) / 2$$

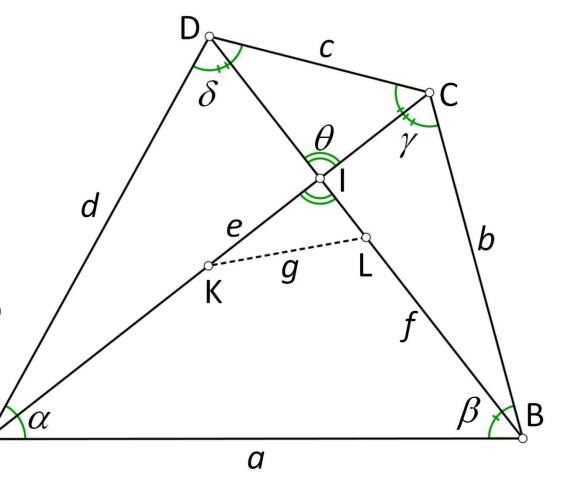
$$\Sigma_{ABCD} = \mathbf{e} \cdot f \cdot \sin(\theta) / 2$$

Loi des cosinus:

$$|a^2 - b^2 + c^2 - d^2| = 2ef \cos(\theta)$$

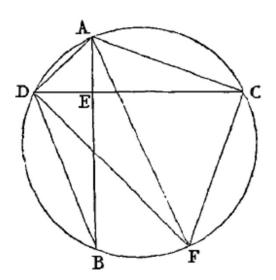
$$\tan(\theta) = \frac{4\Sigma_{ABCD}}{\left|a^2 - b^2 + c^2 - d^2\right|} \quad \triangle \alpha$$





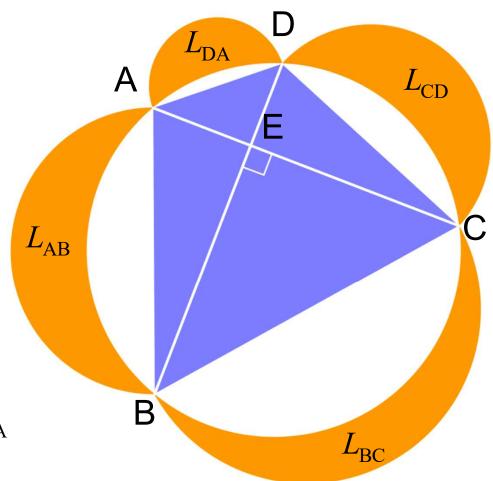
Quadrilatères convexes

Enquête sur les lunules

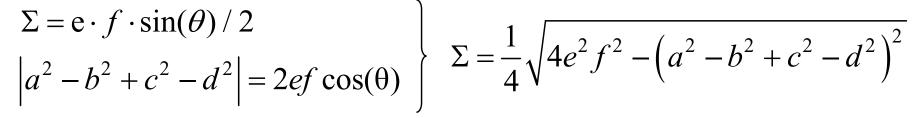


Généralisation des lunules d'Hippocrate

(F. Sammarcelli)



$$\Sigma_{\rm ABD} = L_{\rm AB} + L_{\rm BC} + L_{\rm CD} + L_{\rm DA}$$



J. L. Coolidge (1932) p = (a+b+c+d)/2

$$\Sigma = \sqrt{(p-a)(p-b)(p-c)(p-d) - \frac{1}{4}(ac+bd+ef)(ac+bd-ef)}$$

C. Bretschneider (1842)

$$\Sigma = \sqrt{(p-a)(p-b)(p-c)(p-d) - abcd\cos^2\left(\frac{\alpha+\gamma}{2}\right)}$$

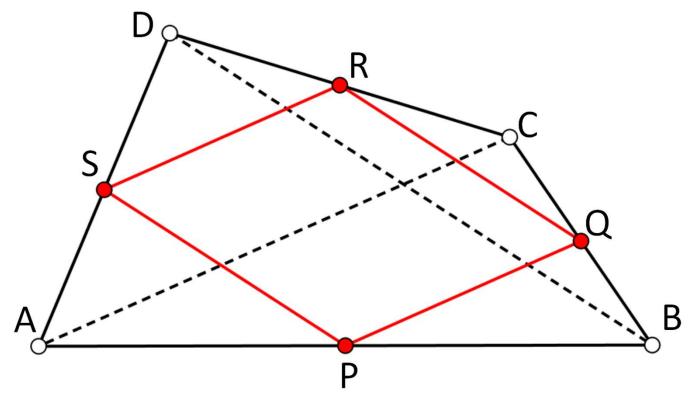
F. Sammarcelli (2024)

$$\Sigma = \sqrt{(p-a)(p-b)(p-c)(p-d) - abcd \sin^2\left(\frac{\alpha - \beta + \gamma - \delta}{4}\right)}$$

d=0 => H'eron Quadrilatère inscriptible : ac+bd=ef ou $\alpha+\gamma=\beta+\delta=\pi$

Pierre Varignon (1654-1722)

P, Q, R, S milieux des côtés



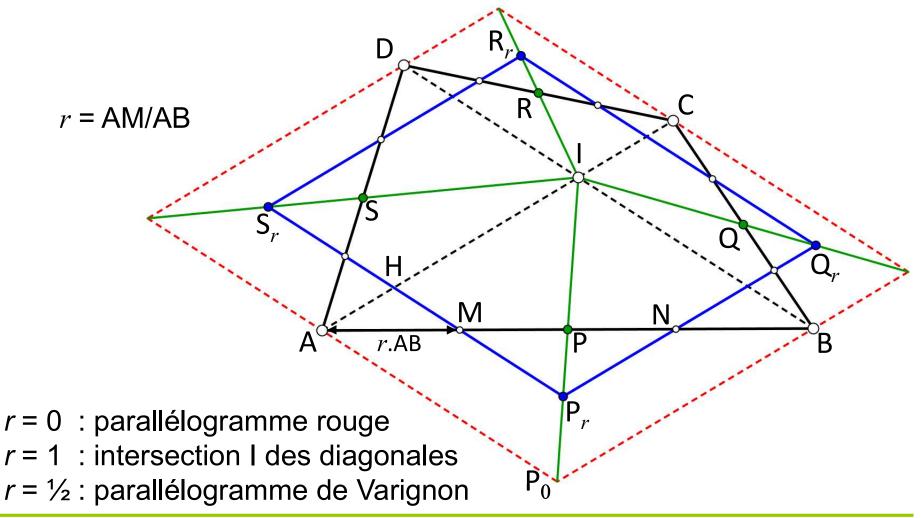
PQRS Parallélogramme

$$\Sigma_{PQRS} = \Sigma_{ABCD}/2$$

Généralisation de Varignon

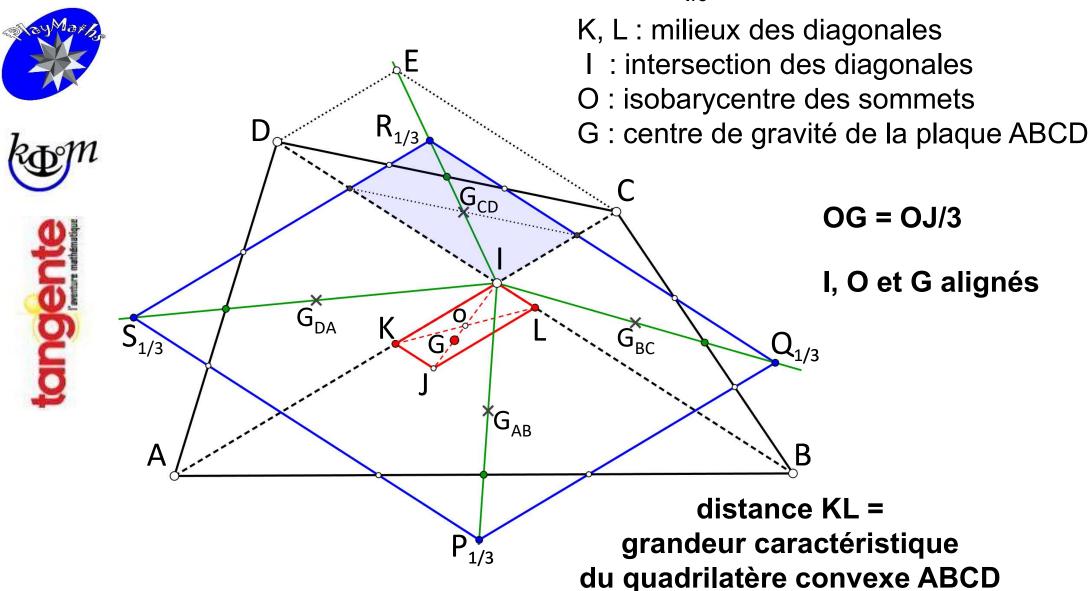
P, Q, R, S milieux des côtés

Famille de parallélogrammes Π_r : côtés parallèles aux diagonales AC et BD



Quadrilatères convexes

Théorème de Wittenbauer (1857-1922) : $\Pi_{1/3}$



Les polygones

Georg PICK (1859-1942)

$$P(B,I)$$
 $S(B,I)$?

$$B = B_1 + B_2 - 2(n+1)$$

$$S = S_1 + S_2$$

$$I = I_1 + I_2 + n$$

éliminiation de *n*:

$$B + 2I = B_1 + B_2 + 2I_1 + 2I_2 - 2$$

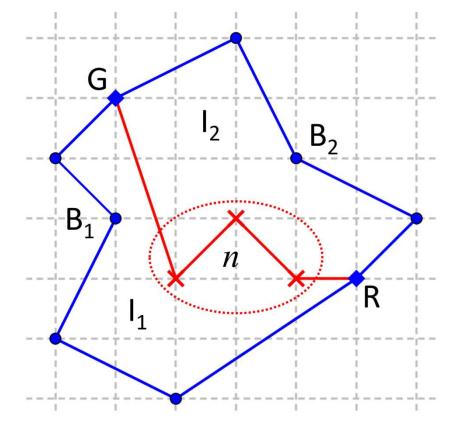
$$B + 2I - 2 = (B_1 + 2I_1 - 2) + (B_2 + 2I_2 - 2)$$

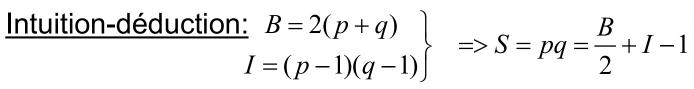
$$S = a(B + 2I - 2) \quad a = ?$$

$$T(3,0) = 1/2 \implies a = 1/2$$

$$S = \frac{B}{2} + I - 1$$

Intuition-déduction:
$$B = 2(p + 1)$$





KФM --- F. LAVALLOU

On intuite le résultat, on le démontre ensuite...

Les polygones

Georg PICK (1859-1942)

Triangulation par N triangles de surface ½ : S = N/2

Calcul de la somme des angles des triangles de 2 façons

$$\sum_{i=1}^{7} \alpha_i = 2\pi$$

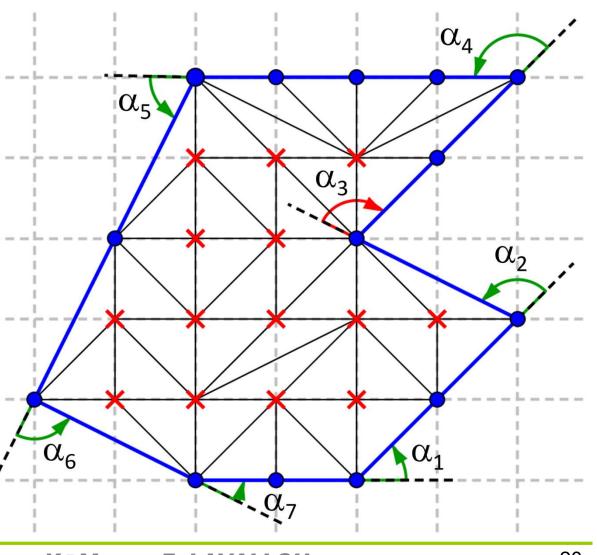
$$N\pi = 2\pi I + \pi B - 2\pi$$

$$S = \frac{B}{2} + I - 1$$

Autre méthode

On élève les points intérieurs et on applique au polyèdre obtenu α_6 la formule d'Euler:

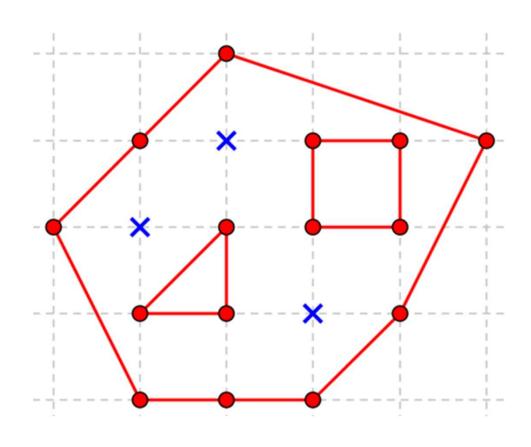
$$F-A+S=2$$



Par récurrence:

$$S_n = \frac{B}{2} + I + n - 1$$

Polygone à *n* trou(s)



Les polygones

Théorème de Bolyai(-Gerwien) :

Deux polygones équivalents sont équidécomposables

Équivalent ⇔ même surface

Problème posé par Bolyai Farkas (1775-156) en 1790

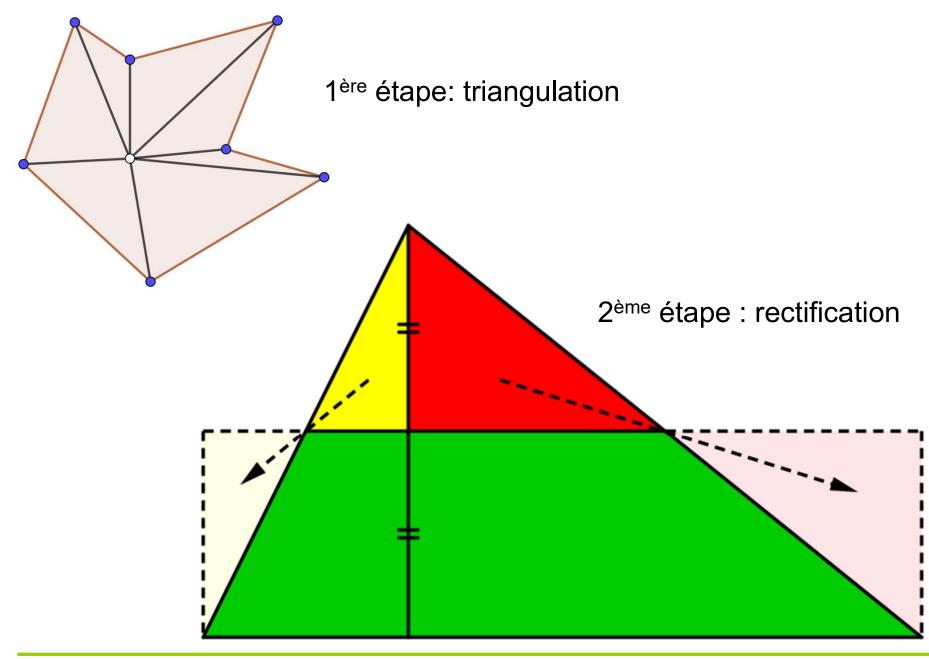
Démonstration:

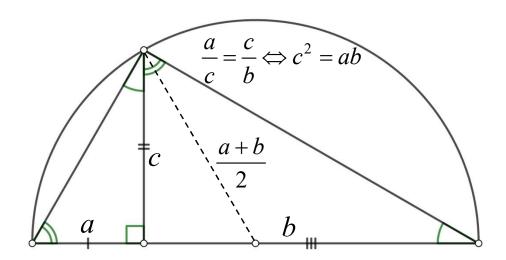
John Lowry: 1814

William Wallace: 1831

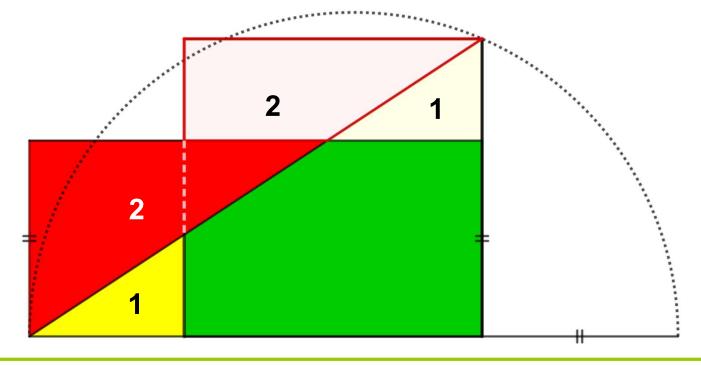
Bolyai farkas: 1832

Paul Gerwien: 1833

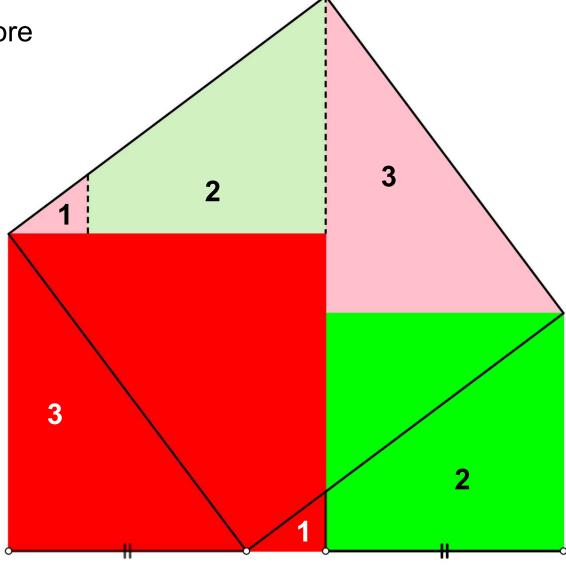


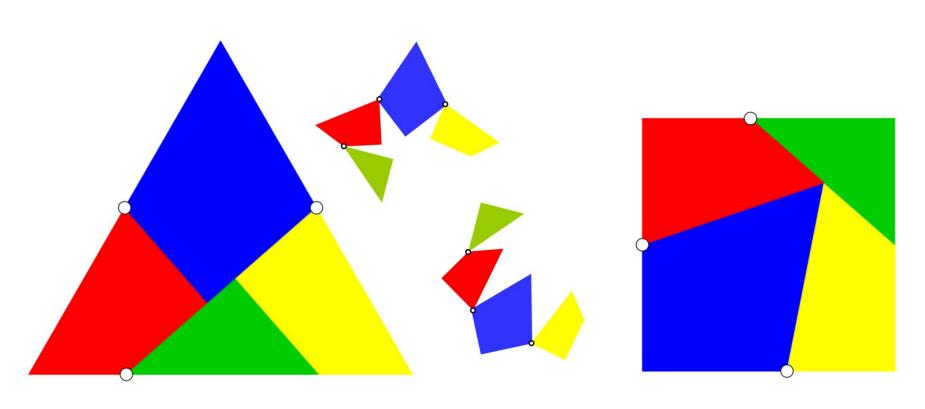


3^{ème} étape : quadrature



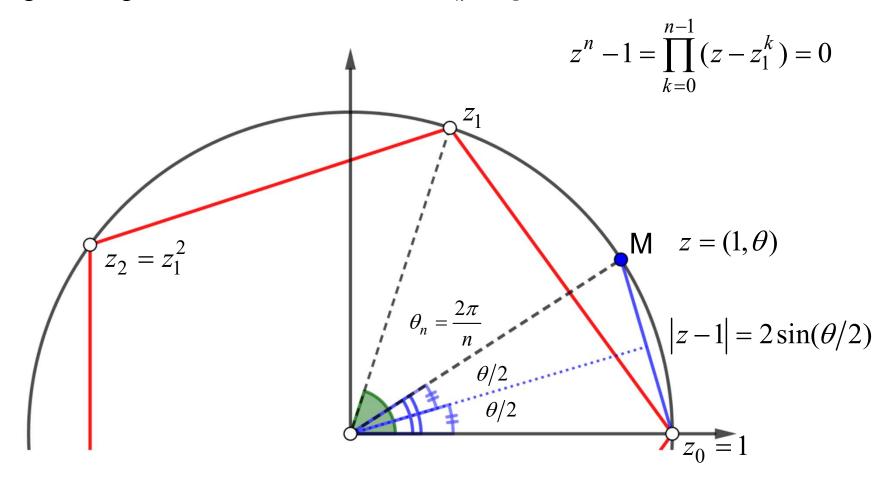
4^{ème} étape : Pythagore





Erik Demaine : toujours possible!

n-gone régulier, sommets d'affixe $z_k = z_1^k$ racines n^{ième} de l'unité.



Point courant M. On pose: $\theta = x \cdot \theta_n = \frac{2\pi x}{n}$

Produit $P_n(x)$ des distances de M aux n sommets.

$$z^{n} - 1 = \prod_{k=0}^{n-1} (z - z_{1}^{k})$$

$$\theta = x \cdot \theta_n = \frac{2\pi x}{n}$$

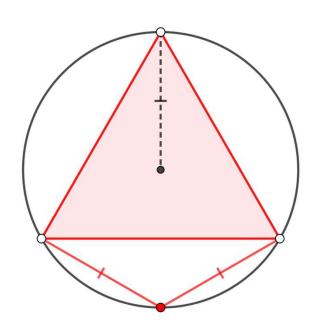
$$P_n(x) = \prod_{k=0}^{n-1} d(M, S_k) = \prod_{k=0}^{n-1} |z - z_1^k| = |z^n - 1|$$

$$P_n(x) = 2\sin(n\theta/2) = 2\sin(\pi x)$$

 $P_n(x+1) = P_n(x) = P_n(1-x)$

$$P_n(1/2) = 2$$

$$P_n(x) = \prod_{k=1}^{(n-1)/2} d(M, S_k) = 1$$



$$Q_n = \prod_{k=1}^{n-1} d(S_0, S_k)$$

$$Q_n = \prod_{k=1}^{n-1} d(S_0, S_k)$$
 $Q_n = \frac{dP_n(x)}{d\theta} \bigg|_{\theta=0} = \frac{n}{2\pi} \frac{dP_n(x)}{dx} \bigg|_{x=0} = n$

$$Q_{2n} = Q_n \cdot P_n(1/2)$$

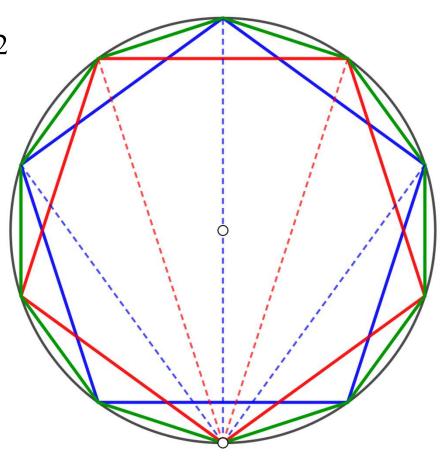
$$Q_{2n} = Q_n \cdot P_n(1/2)$$
 $P_n(1/2) = \frac{Q_{2n}}{Q_n} = 2$

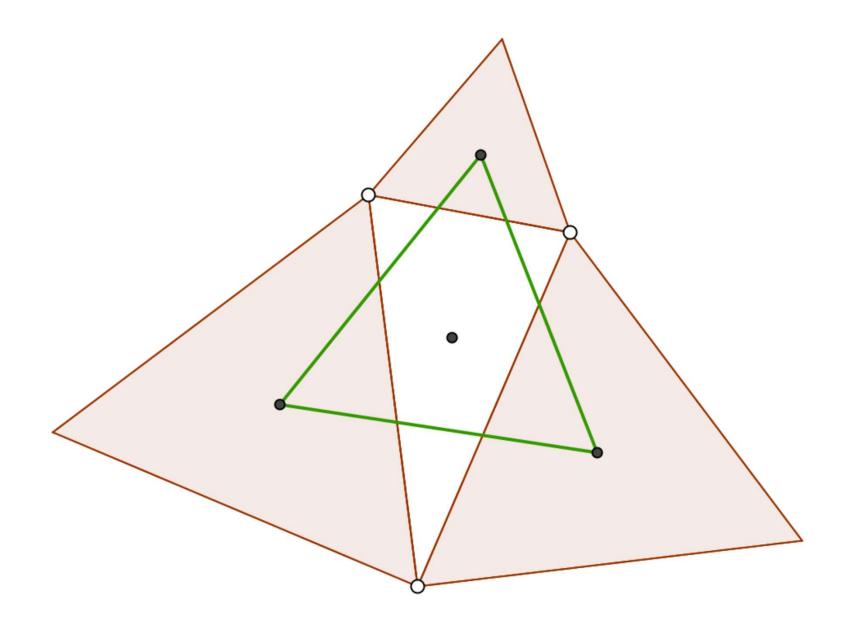
$$P_n(1/6) = P_n(5/6) = 1$$

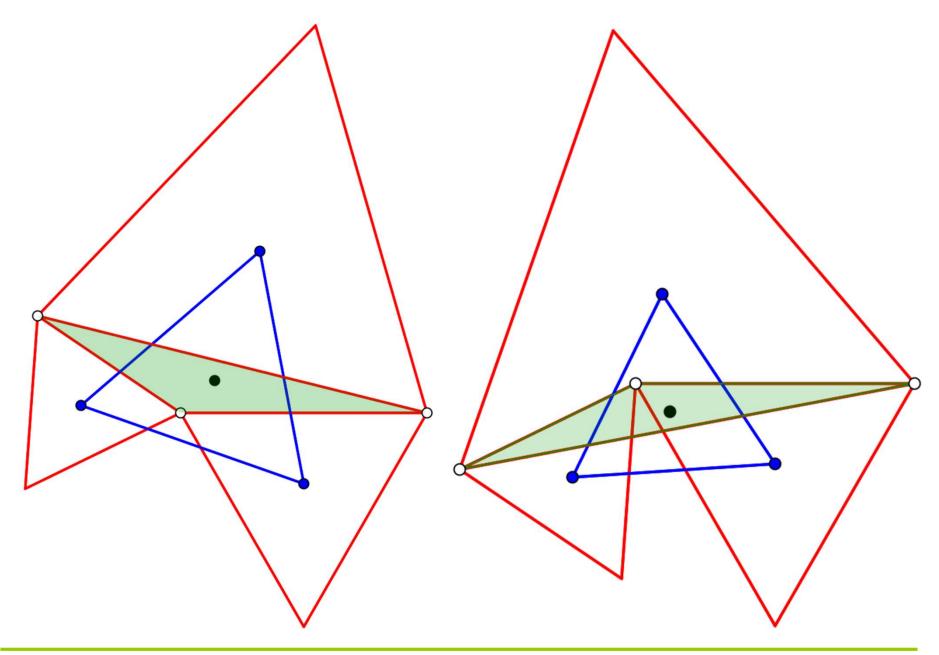
$$P_n(1/4) = P_n(3/4) = \sqrt{2}$$

$$P_n(1/3) = P_n(2/3) = \sqrt{3}$$

$$\prod_{k=0}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}$$





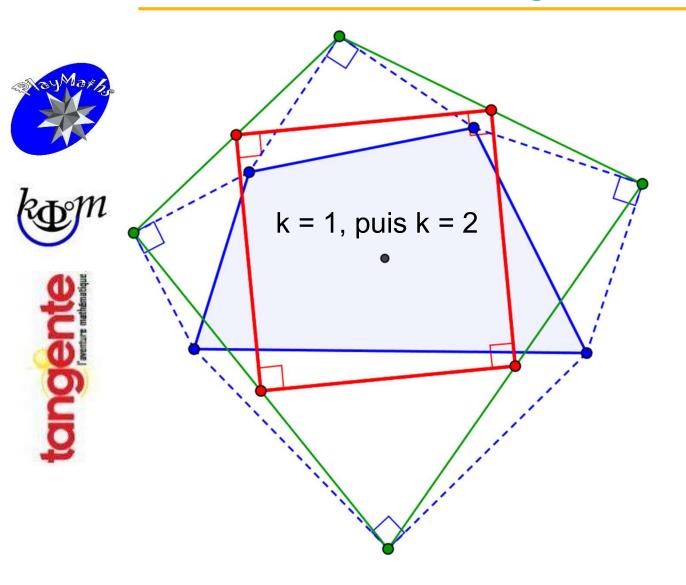


Théorème PDN:

Si des triangles isocèles d'angle au sommet $2k\pi/n$ sont élevés sur les côtés d'un n-gone quelconque P_0 , et si ce processus est itéré avec le n-gone constitué par les sommets des triangles avec une valeur différente de k, jusqu'à ce que toutes les valeurs $1 \le k \le n-2$ soient utilisées, alors le n-gone P_{n-2} est régulier, et son centroïde coïncide avec celui de P_0 .

Théorème de Petr-Douglas-Neumann

Généralisation



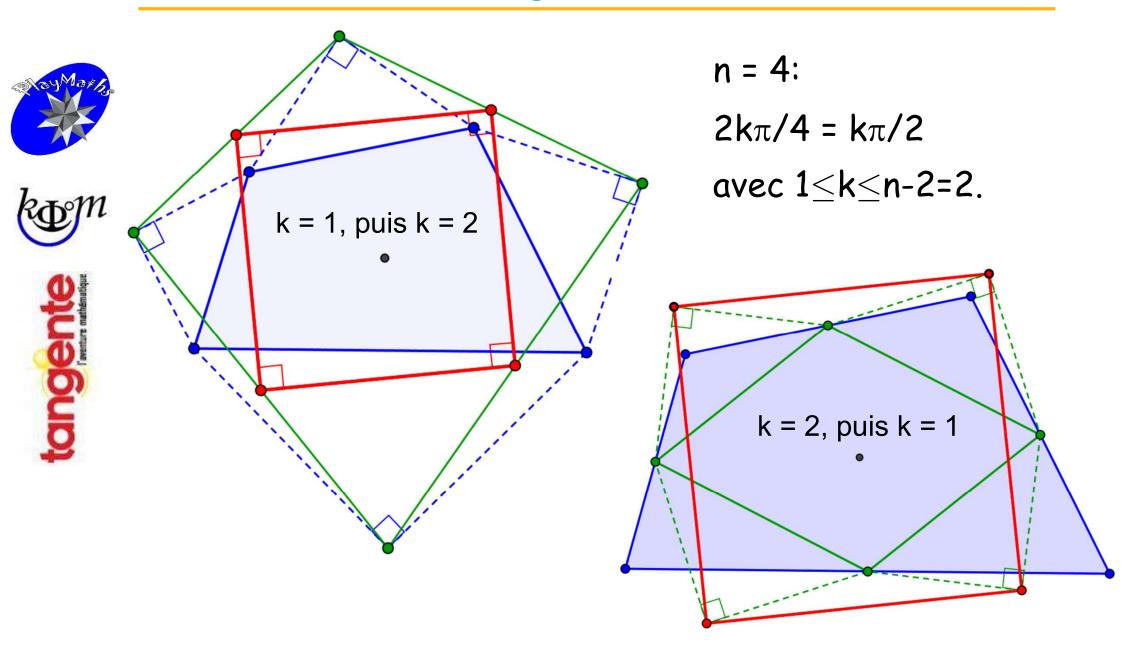
$$n = 4$$
:

$$2k\pi/4 = k\pi/2$$

avec
$$1 \le k \le n-2=2$$
.

Théorème de Petr-Douglas-Neumann

Généralisation

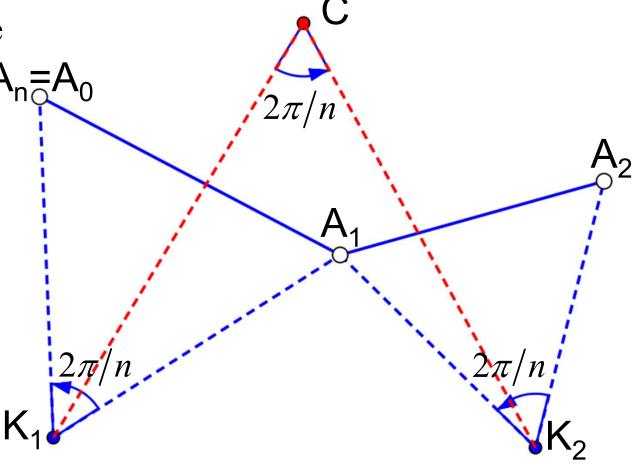


e racine nième de l'unité

$$e^n = 1$$

$$\sum_{i=1}^{n} e^{i} = 0$$

$$\begin{cases} a_{i-1} - k_i = e \cdot (a_i - k_i) \\ k_{i+1} - c = e \cdot (k_i - c) \end{cases}$$



$$c = \frac{1}{(1-e)^2} \left[-a_0 \cdot e + a_1 \cdot (1+e^2) - a_2 \cdot e \right]$$

$$c = \frac{1}{(1-e)^2} \left[-a_0 \cdot e + a_1 \cdot (1+e^2) - a_2 \cdot e \right]$$

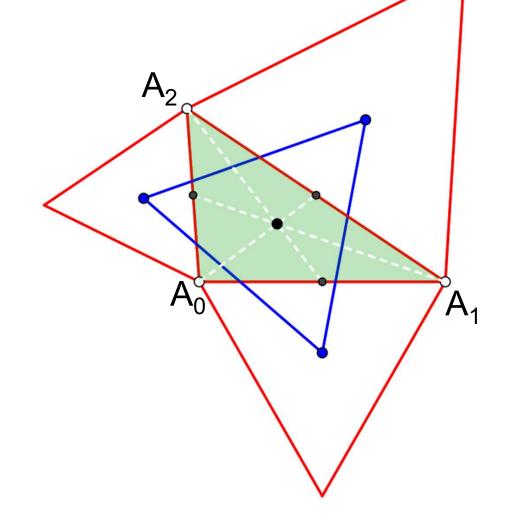
$$n = 3$$
: $e = j$

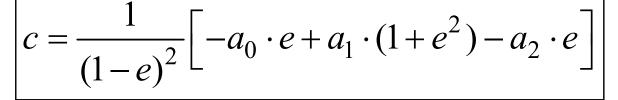
$$1 + e^2 = -e$$

$$(1-e)^2 = 1 - 2e + e^2 = -3e$$

$$c = \frac{a_0 + a_1 + a_2}{3}$$

⇔ Centre de gravité





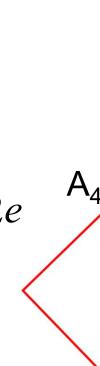
tangente

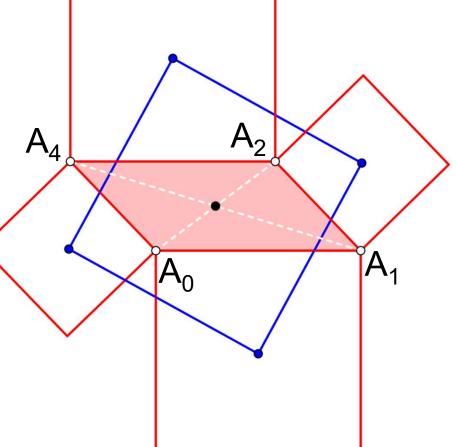
$$n = 4$$
: $e = i$

$$1 + e^2 = 0$$

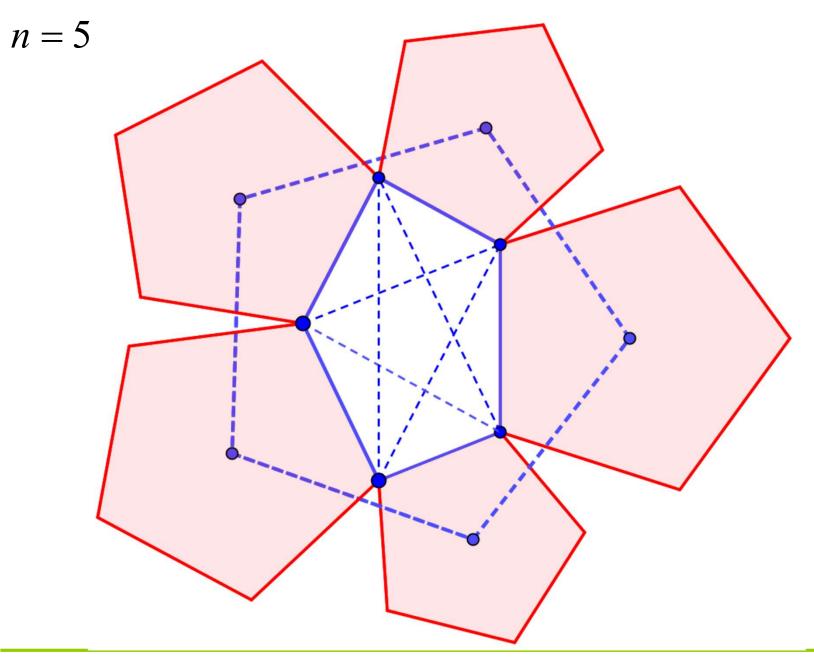
$$(1-e)^2 = 1-2e+e^2 = -2e$$

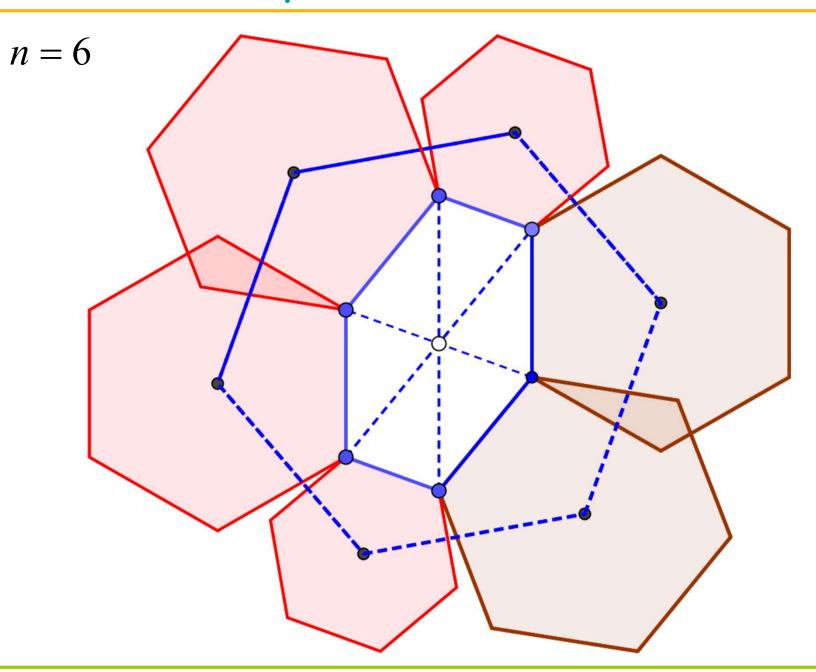
$$c = \frac{a_0 + a_2}{2}$$





⇔ Diagonales concourantes





Transformation affine

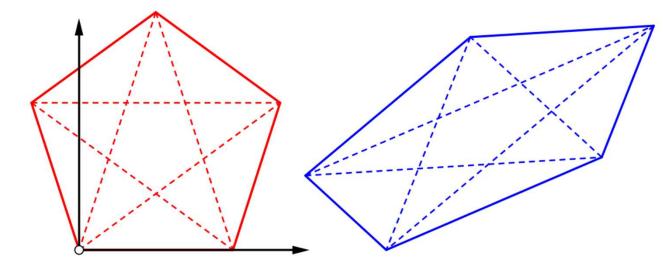
Théorème de Napoléon

Le théorème s'applique pour tout polygone en correspondance affine avec un polygone régulier.

F. Sammarcelli

Tout triangle est l'image affine d'un triangle équilatéral

Théorème de Napoléon



$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1.4 & -0.1 \\ 0.6 & 0.7 \end{pmatrix} * \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

