Introduction : calcul scientifique Applications bio-médicales Modélisation Des images à un maillage de calcul Résultats numériques

Calcul scientifique pour la médecine

Stéphanie Salmon

5 Décembre 2013

Plan

- 1 Introduction: calcul scientifique
- 2 Applications bio-médicales
- Modélisation
- 4 Des images à un maillage de calcul
- 6 Résultats numériques
- 6 Conclusion

Plan

- 1 Introduction: calcul scientifique
- 2 Applications bio-médicales
- Modélisation
- Des images à un maillage de calcul
- Résultats numériques
- 6 Conclusion

Calcul scientifique

Objectif:

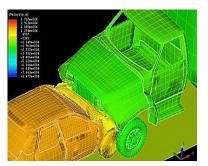
"modéliser le réel pour le simuler à l'aide d'un ordinateur" Spécialité relativement récente (liée au progrès des ordinateurs).

Permet de réduire le coût de développement de produits complexes. Très présent dans l'industrie, secteur Recherche et développement. <u>Exemple</u>: aéronautique, automobile, armement, <u>télécommunications</u>.

Permet de reproduire le réel (chirurgie assistée par ordinateur, instruments de musique) ou d'anticiper (évolution des galaxies, météo, climat).

Calcul scientifique

Principe : on écrit des programmes de calcul basés sur les mathématiques qui seront utilisés par des ordinateurs pour obtenir des simulations numériques : c'est le calcul scientifique.



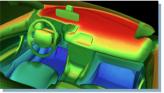
Quelles applications ?

Très variées! Quelques exemples:

- La conception de véhicules (voitures, trains, avions)
- La simulation d'incidents (nucléaires, civils, maritimes) : protocoles de sécurité visant à minimiser les risques de pertes
- Le traitement de données et d'images : télécommunication, compression d'images, cryptographie, images médicales.
- La modélisation de la dynamique du vivant.

Exemple d'application : industrie automobile (I)

Simulations numériques pour un essai de choc sur une voiture.



Industrie automobile (II)

Simulation sous RADTHERM de la salle d'ensoleillement de BCEV pour obtention d'une cartographie numérique d'ensoleillement

Livrables: températures maximales en tout point du modèle après cycle d'ensoleillement.

Alimentation des STO (planche de bord, ébénisterie etc...).

Orientation sur le choix des matériaux.

Exemple d'application : nucléaire

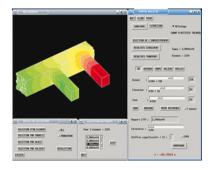
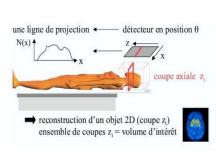


Figure: Exemple de modélisation et simulation réalisées à l'Institut de Radioprotection et Sûreté Nucléaire (Logiciel Mélodie).

Exemple d'application : imagerie médicale

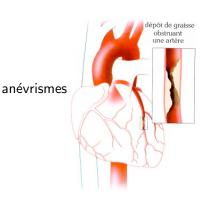

Exemple de la tomographie d'émission gamma

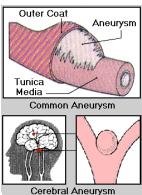
Sous différentes incidences angulaires θ

Imagerie médicale

Plan

- Introduction : calcul scientifique
- 2 Applications bio-médicales
- Modélisation
- 4 Des images à un maillage de calcul
- 6 Résultats numériques
- 6 Conclusion

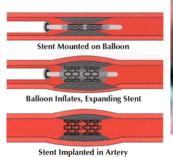

Modélisation et simulation d'écoulements sanguins ou d'écoulements pulmonaires.


<u>Objectif</u>: Mettre à la disposition du monde de la santé des **outils automatiques de simulation** basés sur :

- la reconstruction de la géométrie tridimensionnelle des vaisseaux sanguins ou des poumons à partir de l'imagerie médicale,
- des simulations numériques des écoulements, conçu comme aide au diagnostic et/ou à la planification thérapeutique et/ou au pronostic post-opératoire de maladies artérielles ou pulmonaires.

Maladies vasculaires

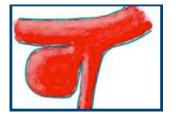
Principales causes de mortalité dans les sociétés industrialisées = certaines maladies vasculaires comme les sténoses artérielles et les


Pour quelles thérapies?

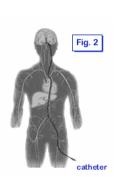
Techniques Endo-Vasculaires : minimiser l'accès anatomique.

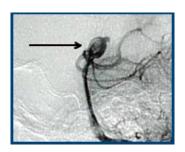
- traitements destructifs : traitement par laser des sténoses artérielles,
- poses de dispositifs médicaux dans la lumière des bioconduites: endoprothèses ou stents artériels dans les parties sténosées, spires ou coils endocavitaires dans les anévrismes.....

Sténoses


Stent

Introduction : calcul scientifique Applications bio-médicales Modélisation Des images à un maillage de calcul Résultats numériques Conclusion


Anévrismes



Coils ou spires endocavitaires

Traitement des anévrismes

Maladies pulmonaires

En augmentation dans nos sociétés : infections respiratoires, asthme (6 à 7% de la population est asthmatique -2008-) . . . Traitement par bronchodilatateur : mesurer quel pourcentage de produits actifs arrive réellement juqu'aux bronchioles ? Comment améliorer ce pourcentage ?

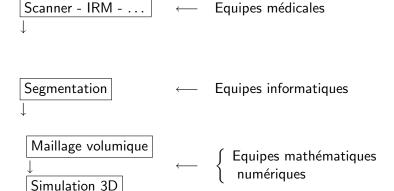
Objectifs des simulateurs

- Aider à la compréhension du développement de ces maladies (influence des facteurs hémodynamiques par exemple).
- Aider à la progression endo-vasculaire, prévoir les risques de rupture, guider la pose = planification des opérations.
- Aider à améliorer les traitements (les performances des bronchodilatateurs, optimisation de forme des implants endovasculaires).
- Construire des bases de données pour l'aide au pronostic des certaines maladies ou de leur développement.
- ⇒ Expérimentation numérique (in silico!)

Propriétés souhaitées des simulateurs / Implications

- le plus "automatique" possible, minimiser l'intervention humaine =>> travail collaboratif,
- tendre vers le "temps réel" ⇒ simplifier sans perdre l'intérêt,
- prendre en compte la variabilité biologique ⇒partir de l'imagerie.

Les équipes dans le monde qui travaillent sur le bio-médical


- Cambridge,
- Oxford,
- Londres,
- EPFLausanne,
- Courant Institute (New-York),
- Paris (INRIA Rocquencourt Projet REO)
- . . .

Pourquoi cette explosion des mathématiques pour le bio-médical ?

Développement des méthodes numériques et augmentation de la puissance des ordinateurs :

- Géométrie complexe.
- Phénomènes biologiques donc modèles complexes (exemples : fluide complexe et solide déformable en interaction pour les artères.)
- Larges échelles.

Plan de travail

Plan

- 1 Introduction : calcul scientifique
- Applications bio-médicales
- Modélisation
- 4 Des images à un maillage de calcul
- Résultats numériques
- 6 Conclusion

Des équations...

Une équation : "trouver x dans $\mathbb R$ tel que $x^2=1$ ". Une équation **différentielle** : "trouver $f:\mathbb R\longrightarrow\mathbb R$ telle que f'(x)=f(x) pour tout x dans $\mathbb R$.

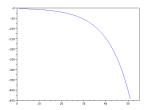


Figure: Une solution...

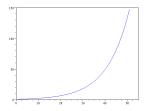


Figure: La solution qui vaut 1 en x = 0.

Des maillages...

Comment trouver une fonction?

- on trouve son expression $f(x) = e^x \dots$ impossible en général!
- on approche le graphe de la fonction c'est-à-dire les valeurs de la fonction en différents points du domaine (= maillage)

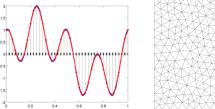


Figure: Un maillage en 1D (gauche) et un maillage en 2D (droite).

Des équations aux dérivées partielles...

Résoudre une équation **aux dérivées partielles** : "trouver $f:(x,y,z)\longmapsto f(x,y,z)$ vérifiant une relation liant f et ses dérivées (partielles) par rapport à x,y et z...

Même méthode : trouver les valeurs de la fonction inconnue en des points du domaine.

- Existe-t-il une solution à cette équation ? Si oui, est-elle unique ?
- Etude qualitative de la solution
- Choix de la discrétisation : passage d'un problème posé en dimension ∞ à un problème en dimension finie (que l'on peut résoudre à l'aide d'un ordinateur !).
- Programmation et validation du programme.

Modélisation : écoulements sanguins

```
Sang = suspension concentrée de cellules :
```

- globules rouges (hématies),
- globules blancs (leucocytes),
- * plaquettes.
- ⇒ Fluide non-newtonien.

Mais

le caractère multiphasique ne devient important que dans les petits vaisseaux!

donc

simplification sang = eau!

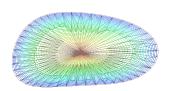
Ecoulements sanguins artériels

Artères : section circulaire, solide élastique en grande déformation


⇒ Interaction fluide-structure.

Hypothèse de travail dans le réseau artériel cérébral :

Dans un premier temps : fluide **homogène** et **newtonien**.


Interaction fluide-structure dans les artères proximales.

⇒ équations de Navier-Stokes pour le fluide + équation de l'élasticité pour la structure !

Ecoulements sanguins veineux

Veines : section elliptique (car collabable), pas d'interaction fluide-structure au niveau des sinus mais au niveau des jugulaires. A ce jour pas très bien comprise, beaucoup de modélisation reste encore à faire!

Ecoulements pulmonaires

Air + molécules actives de médicaments :

 \implies équations de Navier-Stokes pour le fluide + transport pour les molécules.

 \implies écoulements granulaires : équations de Navier-Stokes pour le fluide + équation de Vlasov pour les molécules.

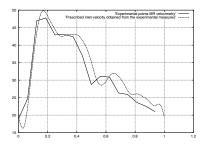
L'équation :

On cherche u la vitesse du fluide et p la pression du fluide, caractéristiques de l'état du fluide, satisfaisant l'équation de la dynamique des fluides incompressibles (Navier¹- Stokes²) :

$$\left\{ \begin{array}{rcl} \frac{\partial u}{\partial t}(X,t) + u.\nabla u(X,t) - \nu \Delta u(X,t) + \nabla p &=& 0, (X,t) \, \mathrm{dans} \,\, \Omega \times \mathbb{R}^+ \\ & \mathrm{div} \,\, u(X,t) &=& 0, (X,t) \, \mathrm{dans} \,\, \Omega \times \mathbb{R}^+ \\ & u(X,0) &=& u_0(X), \,\, X \, \, \mathrm{dans} \,\, \Omega \\ & + \,\, \mathrm{Conditions} \,\, \mathrm{Limites}. \end{array} \right.$$

¹Claude Louis Marie Henri Navier, 1785-1836, français

²George Gabriel Stokes, 1819-1903, irlandais


Théorie

A ce jour, on ne sait pas démontrer en 3D l'existence de solutions régulières définies globalement en temps !

Mais on peut démontrer l'existence de solutions **faibles** (l'unicité sous certaines conditions !), ce que l'on fait par la suite.

Conditions limites : artères

Entrée U = fonction(t): vitesse dépendante du temps (flot pulsé).

Peau : Le fluide ne doit pas traverser la peau du vaisseau,

Conditions limites en sortie : artères

Plusieurs choix:

- Sortie libre ("ne rien faire")
- Imposer la pression (???)
- Coupler à un modèle pour simuler le reste du réseau (modèle 0D ou 1D).

ATTENTION : si fluide-structure, couplage à un modèle obligatoire !

Sortie libre et formulation symétrisée (I)

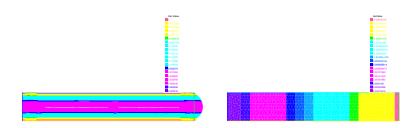


Figure: Vitesse et pression - Ecoulement de Poiseuille imposé à l'entrée et à la sortie.

Sortie libre et formulation symétrisée (II)

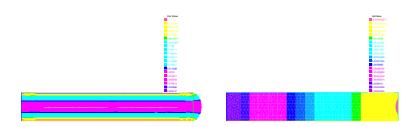
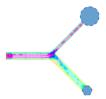



Figure: Vitesse et pression - Ecoulement de Poiseuille imposé à l'entrée et sortie libre.

Modèle en sortie

En régime stationnaire :

On a en entrée un flux constant d'amplitude A. On a aux sorties des modèles capacitifs, avec $C_2 = 2C_1$.

On met donc sur la sortie la plus large un compartiment peu élastique et sur la sortie la plus fine un compartiment deux fois plus élastique que l'autre.

Conditions limites: veines

Entrée U uniforme : vitesse provenant de la micro-circulation.

Peau : Le fluide ne doit pas traverser la peau du vaisseau,

soit
$$U=0$$
.

Sortie : condition limite de paroi poreuse ou de traction (appel du coeur).

$$\mathbf{u} \cdot \tau = 0$$
 et $\sigma \mathbf{n} \cdot \mathbf{n} = 0$.

Plan

- Introduction : calcul scientifique
- 2 Applications bio-médicales
- 3 Modélisation
- 4 Des images à un maillage de calcul
- Résultats numériques
- 6 Conclusion

Imagerie et acquisition

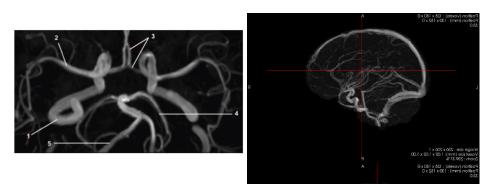


Figure: Polygone de Willis ARM TOF (gauche) - Réseau veineux cérébral : IRM (droite).

Maillages 3D

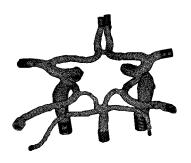


Figure: Polygone de Willis (262174 tétraèdres) - Réseau veineux (237438 tétraèdres).

Segmentation - Reconstruction surfacique

Traitement du maillage : étape l

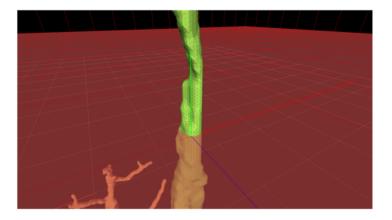


Figure: Sélection et coupe par un plan : logiciel "maison" Cutmesh d'O. Génevaux (IR - LSIIT Strasbourg)

Traitement du maillage : étape II

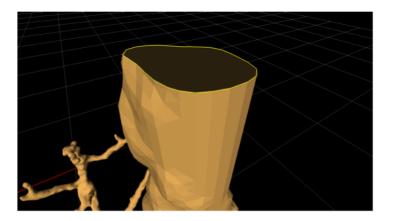


Figure: Coupe : logiciel "maison" Cutmesh d'O. Génevaux

Traitement du maillage : étape III

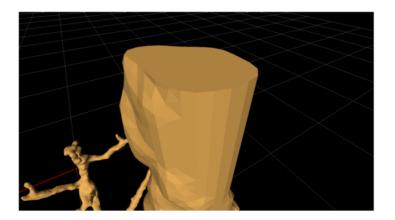


Figure: Fermeture de section : logiciel "maison" Cutmesh d'O. Génevaux

Traitement du maillage : étape III

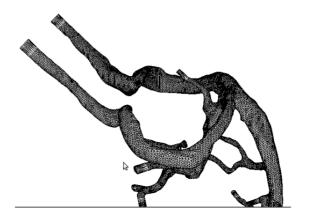
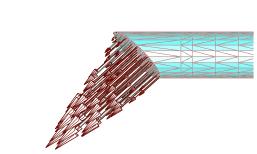



Figure: Rallongement des entrées-sorties.

Conditions limites (sortie)

Sortie libre ! IMPORTANT : sections de sorties perpendiculaires à l'axe du vaisseau !

Sinon!

Traitement du maillage : étape IV

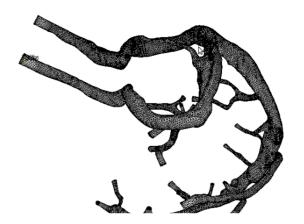


Figure: Optimisation du maillage : code Free Yams de P. Frey

Traitement du maillage : étape V

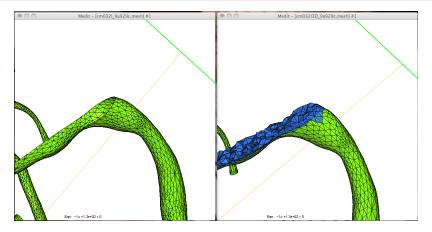


Figure: Maillage 3D à partir du maillage de surface : code version 4 □ → 4 □ → 4 □ →

Traitement du maillage

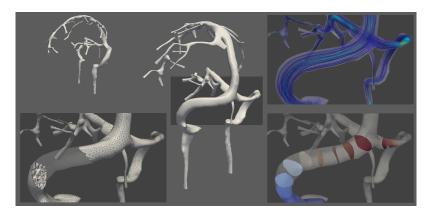


Figure: Maillage 3D du réseau veineux cérébral complet.

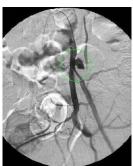
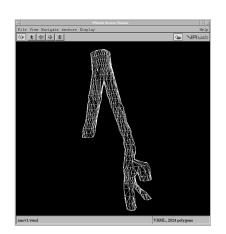
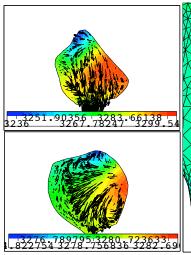
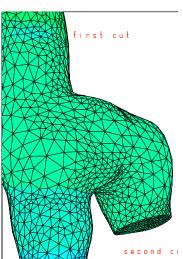
Autre maillage

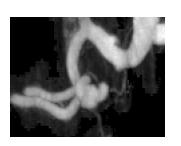
Figure: Reconstruction poumons de rat - Image CHU Hautepierre - Pr Constantinesco par Y. Hoarau (IMFS).

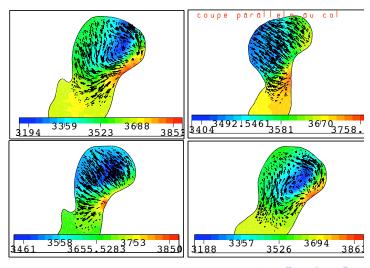
Plan

- Introduction : calcul scientifique
- Applications bio-médicales
- Modélisation
- 4 Des images à un maillage de calcul
- 6 Résultats numériques
- 6 Conclusion

Anévrisme latéral illiaque


Figure: Une coupe abdominale - Scanner CT après injection d'un produit contrastant (gche) - Angiographie *a posteriori* (droite).



Résultat de simulation stationnaire : Polygone de Willis, Stokes, $\mathbb{P}^2 - \mathbb{P}^1$), vitesse uniforme en entrée, sortie libre.

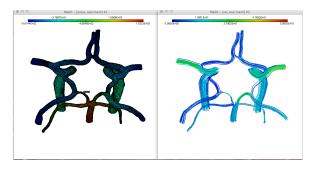
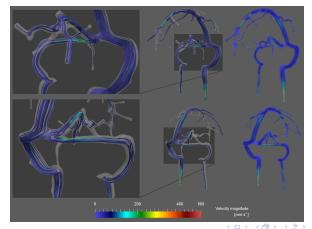



Figure: Résultats de simulation : pression (gauche) et lignes de courant (droite) - FreeFem++ sur ROMEO https://romeo.univ-reims.fr/.

Réseau veineux cérébral : FreeFem++ ($\mathbb{P}^2 - \mathbb{P}^1$), vitesse uniforme en entrée, sortie libre.

Réseau cérébral complet

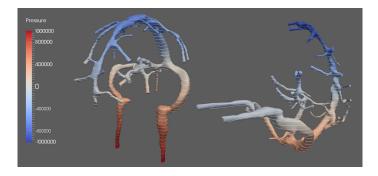
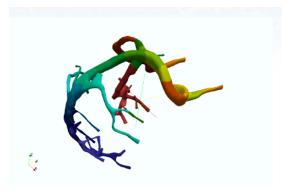



Figure: Résultats de simulation : FreeFem++ - Champ de pression.

Résultat dans le réseau cérébral complet

(a) mesh partitioning

Figure: Décomposition de domaine.

Résultat de simulation Navier-Stokes instationnaire : réseau veineux

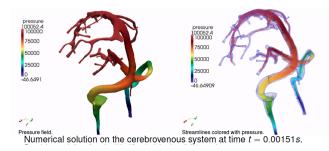
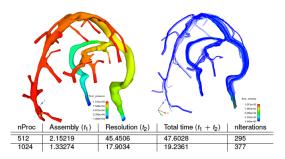



Figure: Résultats de simulation - Feel++ sur IRMA-HPC, 32 processeurs. Towards large-scale three-dimensional blood flow simulations in realistic geometries, C. Caldini, V. Chabanne, M. Ismail, G. Pena, C. Prud'homme, M. Szopos, R. Tarabay, CEMRACS Project ViVaBrain (2012).

Résultat de simulation Stokes stationnaire : réseau veineux

Steady Stokes equations, Neumann-Neumann boundary conditions, $\mathbb{P}^2\mathbb{P}^1$ approximation, 10 millions dof, 1024 procs, SuperMUC Computer.

[V. Chabannes PhD Thesis]

Plan

- Introduction : calcul scientifique
- Applications bio-médicales
- 3 Modélisation
- 4 Des images à un maillage de calcul
- Résultats numériques
- 6 Conclusion

Axes de recherche : point de vue mathématique

- Nombreux outils développés et d'autres en cours de développement pour améliorer les segmentations et pour passer des segmentations aux maillages de calcul - avec les informaticiens.
- Modélisation (fluide newtonien/ non newtonien..., simplification de modèles).
- Conditions limites (couplage de modèles).
- Interaction fluide-structure.
- Calcul haute performance (parallélisme) avec les informaticiens (35 000 000/60 000 000 heures sur SUPERMUC obtenus pour la rhéologie sanguine au 6ème appel PRACE).

Conclusion

Simulations numériques fournissent des informations intéressantes impossible à obtenir de manière non-invasive chez les patients intérêt du calcul scientifique et des simulations.

Difficultés du calcul scientifique appliqué au biologique :

comment valider?